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ABSTRACT

The theory of optimum radar detection is well known and is generally implemented in
expensive ASICs or supercomputers. However, today’s state-of-the-art FPGAs are capable of
performing relatively complex algorithms and provide the added benefit of being reconfigurable
with new algorithms or methods on-site. Los Alamos National Laboratory has undertaken the
goal of developing a receiver that is capable of performing detection and bandwidth estimation of
pulsed radar systems. It is designed to function in electronic intelligence (ELINT) applications,
where the goal is to determine the capabilities of threatening systems, such as radars which
guide aircraft or missiles to targets.

This thesis addresses methods of pulse detection and bandwidth estimation that are able
to be implemented on an FPGA. The framework is that which is commonly used in this appli-
cation: a polyphase filter bank subband frequency decomposition of the RF signal, followed by
statistical detection methods. The optimal fixed-sample-size (FSS) estimator for this subband
decomposition is shown to be the F-test, based on the output statistics of the filter bank, which
are found to be chi-squared. An alternative to fixed-sample-size methods, the sequential prob-
ability ratio test (SPRT) is, however, more suited to ELINT due to its ability to adapt the test
length to the received data. The SPRT is shown to achieve a higher probability of detection
with approximately 1/5 the required sample size of the FSS method. The complexity of the
SPRT is equivalent to that of the FSS method, and the statistic that results from the optimal

SPRT implementation also lends itself to easy calculation of the bandwidth of the signal.
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CHAPTER 1

INTRODUCTION

For years, the theory of optimum radar detection has been known and performed in prac-
tice using analog methods, expensive ASIC implementations, or supercomputers. The recent
advances in FPGA technology have caused a new paradigm in algorithm development, the re-
configurable computing architecture. Algorithms coded in the hardware description language
(HDL) can be loaded onto FPGAs to perform signal processing tasks at a speed that is not pos-
sible today in low-cost floating-point processors. The ability of the FPGA to be reprogrammed
with a new or updated algorithm allows it a flexibility that is not available in custom-designed
ASICs. With this reconfigurable flexibility come certain limitations, however. The compu-
tational complexity that is achievable in today’s state-of-the-art FPGAs is a function of the
number of logic components that can be fit on a chip. Also, the FPGA only functions efficiently
in a fixed-point architecture, which does not lend itself to complex signal processing algorithms.
As such, it requires a joint optimization of resources to reduce the computational complexity of
the algorithms so they will perform well in the environment of reconfigurable computing, while
maintaining a level of performance that justifies the use of RC technology over more expensive
ASICs.

A leader in RC technology, Los Alamos National Laboratory’s Space Engineering Division
has recently developed an RC platform suitable for signal processing applications and has un-
dertaken the goal of implementing a matched bandwidth radar receiver in FPGA technology.
The design goal is to implement a computationally efficient radar pulse detection strategy, while
maintaining as high a level of performance with respect to optimal methods as possible. This

thesis work provides a piece of the overall design by investigating the best pulse detection strat-




egy followed by a bandwidth estimation scheme that can be implemented given the restrictions

of the RC platform, the RCA-2.

1.1 Problem Statement

The particular design problem posed was that commonly incurred in an electronic intel-
ligence (ELINT) application. ELINT is the result of observing signals transmitted by radar
systems to obtain information about their capabilities [1]. The value of ELINT is that it pro-
vides information about threatening systems, such as radars that guide aircraft or missiles to
targets. Clearly, ELINT is most useful in situations where some hostility is involved; otherwise
the information could be obtained directly from the radar user or designer. The design problem
is difficult in that, for ELINT applications, a priori knowledge of the systems to be detected is
minimal. Besides the knowledge that the detector should find pulsed radar systems, a minimum
of other assumptions should be made. The design method can be summarized most effectively

as a series of steps:
e Precondition the signal, possibly involving linear or nonlinear transformations.

e Implement the “best” detector, given the computational complexity limitations of the

host platform.

e Upon detection, deduce as much information regarding the detected event as possible (e.g.,

time of arrival (TOA), pulse length, SNR, bandwidth, center frequency, pulse modulation).

In fact, the optimal solution to this problem is known; however, the goal of this work is to see
if the optimal solution can be implemented in an FPGA, and whether it is wise to do so. There
may be assumptions and simplifications that allow near-optimal performance for much reduced
computational complexity. As always, engineering design is a balance of trade-offs between

performance and implementation issues.

1.2 Design Parameters

Several of the design .parameters of the problem are limited by the RC platform itself
and must be heeded during the design process, outlined in Table 1.1. Other parameters are

assumptions based on the typical environment of this system. Most of the design parameters




Table 1.1 Design Parameters

| Parameter | Value | Unit |
Sampling Rate 100 MHz
Bandwidth 5 - 45 MHz
Pulse Duration .1 -1000 s
Pulse SNR -20 - 20 dB
Center Frequency Agility 1 1S
Modulation NOMOP, LFMOP, PSKMOP, Hopped
Noise White, Gaussian, Non-stationary

are self-explanatory; however, those having to do with the center frequency agility and the

modulation will be dealt with fully in Chapter 5 and are peculiar to this application.

1.3 System Overview

As stated earlier, the design goal is a matched-bandwidth pulse detector. A matched-
bandwidth pulse detector is one in which pulses are detected in the maximum system bandwidth
but are then modulated to baseband and filtered with a filter matched to their modulation or
pulse bandwidth in order to improve the resulting SNR of the pulse. After this process, there
are many options, including compression, recording, or further processing of the enhanced
waveform. At the system level, the process is a parallel one. We are allowed to manipulate the
input RF data in any way, destructive or otherwise, to accomplish detection, as the same RF
data is input into a digital modulator which translates the pulse center frequency to zero, then
uses an adaptive decimation scheme to match the bandwidth of the pulse. Figure 1.1 presents
a system block diagram. The individual components of the system will be discussed more
fully, beginning with the polyphase filter bank in Chapter 2. Two options for statistical pulse
detection are presented: the fixed sample size estimators in Chapter 3, and sequential estimators
in Chapter 4. Following detection, bandwidth and center frequency must be deduced, and are

the subjects of Chapter 5.
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CHAPTER 2

POLYPHASE CHANNELIZER

The first step in the process of matched bandwidth detection is the subband channelization,
which is performed to increase the SNR of pulses, as we expect them to have a finite frequency
support limited to some ratio of the full input bandwidth. Of course, there are many ways that
one can go about the filtering that produces a subband decomposition, but the theory rests on
two operations: a prototype filter to achieve the desired subband shape, and the modulation
method which produces the channels across some portion of the spectrum. In our case, there are
three main options, a wavelet decomposition, a filter bank based on a discrete cosine transform
(DCT) modulator, and a filter bank modulation based upon a discrete Fourier transform (DFT).
For FPGA implementation, we choose to use a DFT-based scheme because there exist many
cores for commonly used FPGAs to perform both complex and real-valued DFTs. Wavelet and
DCT methods are possible, and are investigated fully in a paper by Arrowood [2].

Given that we are using a DFT as the modulator for our decomposition, a polyphase im-
plementation makes the most sense and provides a multirate architecture that can allow the
internal clock used for computation to be set at a much lower rate than the input data clock.
A polyphase filter bank is a simple system, based on two steps; first, the signal is filtered by a
prototype filter, and then the resulting signal is transformed via the DFT. A third step, which
is important to the nature of this project, is what to do with the DFT output. The resulting
complex output has twice as many data points as the input, because each input sample produces
a real and imaginary part which must be accounted for in the FPGA individually. As such, one
option is to use the magnitude of the output, thus resulting in a 1:1 data transformation.

Since the goal of our subband decomposition is detection, we must derive the expected

statistics of the output of the polyphase filter bank in order to determine the optimal methods
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Figure 2.1 Polyphase filter bank.

of detection. To begin, there must be some assumptions made. We will assume the wideband
RF noise to be Gaussian, white, and nonstationary. The nonstationarity is important for real-
world applications, but in most derivations, we will assume that over a short time interval a
random sample is independent and identically distributed (i.i.d.). Our method of derivation is
simple. Model each process as a transformation, and apply methods of statistical derivation

appropriate to each type of transform.

2.1 Reduced Signal Model

As a first approximation, let us propose a reduced signal model where the pulse is of finite
time and frequency support, with no modulation either on the pulse envelope or frequency basis.
Surface search radar employs this type of pulse often; however, it is far from the expected in
the case of more sophisticated radars, as modulation provides important sensitivity increases.

Let our received signal be of the form
r(k) = s(k) + n(k) (2.1)

where s(k) is the desired pulsed signal and n(k) is the noise, subject to the assumptions above.
Let us make several assumptions regarding the signal and noise that provide a reduced signal

model but give us a roadmap for more complicated signal models. Specifically, we assume:




The DFT length is N; and the polyphase prototype filter is a boxcar filter of length
Nj, = Njy.

The signal pulse is of length N,, = N;.

The signal is unmodulated either in pulse envelope or in frequency, but can contain some

initial phase offset § which is modeled as a uniform density on the interval [0, 27).

The base frequency of the signal is centered in one channel of the decomposition.

Given the above assumptions, s(k) is given by
s(k) = Acos(w(k) + 9) (2.2)

where A is the amplitude, d is the initial phase, and w(k) is of the form
jizkl
w(k)=¢ "t (2.3)
In the absence of noise, the received signal is 7(k) = s(k). We model the DFT as a linear

transformation given by

Woo Won - Wony
Wip
W = ’
| WNf,O WNf,Nf J
where W is
—j2nkl
Wl,k =€ Nf (2-4)

If we apply a sequence of linear transformations, W for the DFT and H for the polyphase

filtering, the real and imaginary parts of the transformed signal are
Xs = Re(WHs) (2.5)
and

Y, = Im(WHs) (2.6)




where s = [5(0),5(1),...,s(Nf)] is the signal in vector form. Since we have already assumed
the prototype filter to be boxcar, H is the Ny x Ny identity matrix. By trigonometric identities,
we represent s(k) as

jazkL 5 —j2zkf i5
s(k)=7le " elt+e” Vi (2.7)

Applying the transformation, we recognize that for f = I, the inner product of W and s will

be a constant, but for f # I, it will be zero by orthogonality. Thus, we have

Xs = Re(Ae?®) = Acos(d) (2.8)
and

Y, = Im(Ae’®) = Asin(6) (2.9)

for the real and imaginary outputs. The A absorbs the constant due to the DFT gain and
polyphase filtering into the original signal amplitude A. Stochastically, X,(I) and Ys(l) are
characterized by degenerate distributions, as they place all probability at a single point.

We have derived the statistics of a received pulse in the absence of noise. Now, we look
at the results of a received signal of noise alone, r(k) = n(k). The signal n(k) is a random
1.i.d. sample of size Ny, with each marginal distribution Gaussian. The joint pdf of the random
sample is multivariate Gaussian of dimension Ny. A theorem from multivariate distribution

theory will be subsequently helpful.

Theorem 2.1 (Linear Transformations of Multivariate Normals) Let X = [X1, X, ..., X,)

be a random sample with a joint pdf that is multivariate normal and is distributed as
X ~ Nn(“a E) (210)

where the mean vector is 1 and the covariance matriz is £. A random variable Y obtained by

a linear transformation of the random sample X, Y = LX is distributed as
Y ~ Np(Ly,LEL) (2.11)
where ' denotes transposition.

Because the DFT is a linear transformation, we can use the theorem to find the distribution of

the real and imaginary outputs due to noise:

X, = Re(WHn) (2.12)




and
Y, = Im(WHn) (2.13)
where W and H are as before. Thus, the distributions of X and Y are given by
Xn ~ N(Re(W)u, Re(W)ZRe(W)') (2.14)
and
Yy ~ N(Im(W)u, Im(W)ZIm(W)) (2.15)

Since the antenna is ac coupled to the ADC, the noise is zero mean, and the covariance matrix

is 0?1 by the i.i.d. assumption. Furthermore, since W is an orthogonal matrix,

Xn ~ N(0,0°Re(WW")) = N(0,0?) (2.16)
and

Y ~ N(0, 0 Im(WW’)) = N(0,0?). (2.17)

To find the distribution of the received signal of the original reduced model form r(k) =

s(k) + n(k), we only need to apply the individual results from the signal and the noise alone.

Theorem 2.2 (Convolution Formula) Let X; and X, be independent random variables with
probability density functions fi(z) and fy(z), respectively. Let there be a transformation, Y; =

X1+ X2 and Yo = Xy. Applying a change of variable technique, the joint pdf of Y1 and Y5 is

9(y1,92) = fr(y1 — y2) fa(y2) (2.18)

and the marginal pdf of Y1 = X1 + X5 is given by

a1(m) = / " R - ) o) ds = fi(o1) * fo(o). O (219)

Thus, the pdf of the sum of independent random wvariables is the convolution of the constituent

pdf’s.

By Theorem 2.2, X and Y are distributed as the convolution of the distributions of s(k) and
n(k),

Xstn ~ \/21706_%75(“2 * 6(A cos(6)) = N(A cos(8),0?) (2.20)




and

Yoin ~ e 570’ 4 §(Asin(8)) = N(Asin(s), 02) (2.21)

2mo
so X and Y are distributed as normal random variables with equal variance with mean depen-
dent on the initial phase of the signal.

To complete the derivation of the statistics for the reduced model, we must now apply the
final step of magnitude conversion. In general, the magnitude of the DFT would be calculated
as Z = VX2 + Y2, but since square roots are very computationally complex in the FPGA, we
choose to use the squared magnitude Z = X2 + Y? instead. From distribution theory, we know
that for squared normal variables, we expect a chi-squared distribution, and in fact, we expect

two distributions in our case. For noise alone,
Z ~ 0?x3 (2.22)
and for the signal plus noise case,
Z ~ ax2()) (2.23)

where x2 is the central chi-squared distribution with n degrees of freedom, and x,2()) is the
noncentral chi-squared distribution with n degrees of freedom and noncentrality parameter ).
In our case, the noncentrality parameter is

N (ficos(é))2 N (fisin(cs))2 _ 1:122_ (2.24)

g g

Thus, we expect chi-squared random variables at the output of our polyphase filter bank.

2.2 General Signal Model

Admittedly, the reduced signal model is not of much use for signals of interest in ELINT
applications, but it gives us a basis for extrapolating to a more general signal model that encom-
passes such variables as pulse modulation, phase modulation, and pulse-length considerations.
Of the assumptions of Section 2.1, we retain our assumptions about the noise only, as we will
throughout this entire thesis. However, we now allow both phase and pulse modulation of our

signal

s(k) = A(k) cos(w(k) + 6(k) + &) (2.25)

10




where A(k) is the pulse modulation, and §(k) is the phase modulation.

It is excessive to repeat the above derivation of the statistics as we can use the results to
make general inferences. The most simple case is that of only pulse envelope modulation, as that
would imply that the noncentrality parameter is no longer constant but would be a function of
time. In the case of phase modulation, the inner product of the DFT matrix W with the signal
would no longer be constant in one channel, but would be constant in any number of channels,
and also a function of time. Both of these results do not change the expected statistics; we

retain a chi-squared distribution, but it becomes nonstationary.

2.3 Prototype Filter and Pulse Lengths

In the reduced signal model, we assumed a boxcar filter of length Ny, the DFT length.
However, this resulted in no prototype filter at all. In general, we would like a prototype filter
that achieves the desired out-of-band rejection characteristics. The filter prototype will usually
need some overlap of the DFT to accomplish this, and we assumed above that the pulse length
was equal to the filter length. For pulses longer than the filter length, this is not a problem,
but for any pulse shorter than the filter length we expect to see a reduction in SNR as the
filtering operation spreads the concentrated energy of the pulse to the full length of the filter.
In an optimal situation, since the pulse length is unknown, we would run multiple filter banks
in parallel, each with a different prototype filter sized to optimally filter a pulse of expected
length. However, FPGA implementation prohibits this excessive computation. Thus, we must
choose with care the filter length in order to preserve SNR for short pulses, while providing
sufficient channel subband characteristics after the transformations.

An important function of the prototype filter is to shape each subband channel, but equally
important is the effect of the filtering on the statistics between and within the channels. Our
detection methods will rely on statistical inference, or hypothesis testing. In many methods, the
statistical independence of the samples is important in determining multivariate distributions.
For our purposes, we would like to limit the correlation of the samples as much as possible, in
order to declare them independent to the tolerance of our tests. We can use the methods of
Section 2.1 and particularly the theorem of transformations of multivariate normals to find the

expected correlation of the output variables Z. For the case of a nonboxcar prototype filter of

1




any length, the distribution of the real and imaginary components in each channel is

X ~ N((WH)A cos(3),0*(WH)(WH)") (2.26)
and

Y ~ N((WH)Asin(6),0?(WH)(WH)) (2.27)

If we work with the covariance matrix & = o?(WHH'W'), we can find the correlation coeffi-

cients both between and within each channel for any prototype filter and DFT combination.

2.3.1 Intrachannel correlation

By intrachannel correlation, we mean the correlation of the samples between the differ-
ent channels of the polyphase output, before the magnitude conversion. For example, how is
sample k of the eighth channel correlated with that of its neighbor in the seventh or ninth
channels? This becomes important in bandwidth estimation later, where we would like sta-
tistical independence in order to infer whether there is significant energy in any channel. For
the covariance matrix ¥ above, statistical independence implies orthogonal transformations.
Because the DFT matrix W is necessarily orthogonal, if we limit the polyphase transformation
of the prototype filter H to be orthogonal we require strict statistical independence between
channels. Specifically, we guarantee that the corellation coefficient given by

Cov(Z;, Z;
,_ Covl2,2)

o (2.28)

is zero in every other channel for aligned data.

2.3.2 Interchannel correlation

Similarly to intrachannel correlation, by interchannel correlation we mean the correlation
between different samples in the same channel. For example, how are samples k and k — 1 of
thé eighth channel correlated? This becomes important in the pulse detection stage, as we will
employ a channelized detector for each channel, independent of the other channels. For this
analysis, we must generalize H so that the linear transformation gives us more than one output
sample in each channel for comparison. Here, we will become more specific to this project for
ease of notation in terms of specifying a prototype filter and DFT length, but the results can

be readily generalized to any length by following a similar methodology. For this project, the

12




DFT length is 32, and a suitable prototype filter length is 128. Let us define the prototype
filter polyphase transformation matrix to be H of size 32 x 128, and partition that matrix into

four submatrices each of size 32 x 32 as in

H=[H1 H, Hj H4]

Now, we desire to yield more than one output sample in each channel. If we construct a new

matrix H* as in

- -

Hy H, H; H, 0 ... 0
0 Hy H Hs Hy O
0 0 H; H, H; Hy O

H*

and a new DFT matrix W* as in

W 0 0 0 - 0

0 W 0 0 - 0
W* =

0 0 W 0 0

where 0 denotes a matrix of zeros of size 32 x 32, then we can form a new linear transformation

that yields multiple output samples in each channel. This new transformation is given by
X = Re(W*H'r) (2.29)
Y = Im(W*H'r) (2.30)

where r is the received signal in the presence of noise. We can now compute the covariance

matrix £* = o?(W*H*H*'W*') and use it to find the intrachannel correlation coefficients.

2.3.3 Correlation results

Applying the methods above, we can find the correlation due to any prototype filter. We
begin with the filter designed specifically for this project by Joseph Arrowood, which is a
length-128 non-orthogonal FIR filter {2]. By orthogonalizing this filter, we can compare the
results of the orthogonal and non-orthogonal cases to determine the costs and benefits of each

method. In Figure 2.2, we can see that the nonorthogonal version of the prototype filter has

13
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Figure 2.2 Normalized frequency response of a non-orthogonal filter designed by J. Arrowood,
and an orthogonalized version.

much lower sidebands, resulting in a high out-of-band energy rejection in adjacent channels.
This is important in bandwidth measurement applications, as we would like to keep a strict
channelization of the energy without excess leakage.

Using these two prototype filters, we can now compare the interchannel and intrachannel
correlation coefficients. From the covariance matrix derived in the above section, we can com-
pute the correlation coefficient p with Equation (2.28). The correlation coefficient is bounded
by —1 > p > 1. Statistical independence implies p = 0, and the closer p is to zero, the more
“independent” the respective samples are. We put “independent” in quotation marks because
for p # 0 the samples are necessarily dependent, but we may treat them as approximately
independent for p near zero. In Figure 2.3(a),(b), the interchannel correlation coefficient is
necessarily zero, as we would expect, in the case of the orthogonal prototype filter, but is
about .2 for the non-orthogonal filter. While this is higher than we would like, it remains low
enough that we may treat them as approximately independent as a trade-off for high sideband
attenuation, which is more important than statistical independence between the channels. In
Figure 2.3(c),(d), the intrachannel correlation coefficient is similar for both the non-orthogonal
and orthogonal prototypes. This is to be expected due to the nature of the polyphase filtering.
For any overlap where the filter length is greater than the DFT length, we have a projection
operator that projects the original vector onto a smaller subspace. This data reduction im-

plies that some combination of the data is taking place, resulting in correlation of the output

14




samples. However, we notice that in both cases, the correlation coefficient rapidly approaches
zero away from the current sample, and is still small for the adjacent sample. Thus, we can
safely approximate statistical independence, especially when p = .03 as in this case for the non-
orthogonal filter. From this analysis, the obvious choice is to proceed with a non-orthogonal

prototype filter due to its small intrachannel correlation and high sideband attenuation.
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Figure 2.3 (a),(b) Interchannel correlation coefficients in each of 15 channels for both the
imaginary and real parts of each channel. (c),(d) Intrachannel correlation coefficients based on
relative sample number, where 0 is the current sample number and previous sample numbers
appear as -k for the real and imaginary parts of a representative channel.

16




CHAPTER 3

FIXED-SAMPLE-SIZE DETECTION METHODS

Traditionally, this type of subband detection of radar pulses has been accomplished with
fixed-sample-size (FSS) statistical hypothesis tests. The optimal test is determined by the
statistics after the linear transformation that is chosen for the subbanding. Thus, for our case,
the optimal test for the output of a polyphase filter bank is necessarily much different from the
optimal test for the output of a cosine modulated filter bank, or a wavelet decomposition. As
such, we refer to the “optimal” solution as it applies to this particular subband decomposition.
In general, there is a truly optimal solution to the radar detection problem utilizing matched
filters and multiple independent filter banks for each expected pulse length. However, this is
not implementable in today’s FPGAs as it is too computationally complex. We will derive
and characterize the optimal fixed-sample-size test for the particular case of this subband de-
composition. In fact, for this project, the goal of this work was to determine what exactly is
the optimal solution given this subband decomposition, which is a standard practice in ELINT

applications.

3.1 Optimal Fixed-Sample-Size Detector

Given the statistics present at the output of the polyphase filter bank derived in Chapter 2,
we can derive the optimal test for the case of signal plus noise over purely noise. For these
detectors, we will assume that the detector works in a single subband, independently of all other
channels. For a 32-band decomposition, we would generate 15 usable channels, neglecting the
dc and Nyquist bands that are subject to fixed-precision filtering anomalies [2]. Thus, in our
detection scheme, there would be 15 FSS detectors running independently in each channel. In

general, more complicated methods of alarming on multiple channels at once are possible, and
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these will be discussed during bandwidth estimation, as they are more effective and appropriate
in that setting.
From Chapter 2, we know that the statistics present at the output of the channelizer are

given by
Z ~ o%y3 (Noise Only Case) (3.1
and
Z ~ 02x,22()\) (Signal Plus Noise Case) (3.2)

where we define Z as the output of the polyphase filter bank subject to magnitude conversion.
As we saw before, we will treat these Z as statistically independent subject to the considerations
of the prototype filter maintaining a small correlation coefficient.

Our first problem in finding an optimal solution is to find a statistic that represents the
data well, and separates it into two classes based on its properties. The defining characteristic
of our two cases of signal and signal plus noise is the noncentrality parameter X. This is directly
equivalent to a shift in mean, as will be shown later when we derive a consistent estimator of the
noncentrality parameter for continuous interference. Thus, our statistic should be a sufficient
estimator for A\. Furthermore, we require our tests to be noise-riding. Since we cannot assume
stationarity, we must directly calculate the parameters of the chi-squared distribution from
the data, in general using maximum likelihood (ML) estimators. We now present formally a

method for achieving maximal test power over the class of estimators of a chosen size.

Theorem 3.1 (Neyman-Pearson Theorem) Let X1, Xs,...,X,, where n is a fired positive
integer, denote a random sample from a distribution that has PDF f(z;6). Then the joint PDF
Ole,XQ,. ) .,Xn 18

L(0; 21,22, ... 2n) = f(21;0)f(22;0) - - f(zn; ). (3.3)

Let 6' and 0" be distinct fized values of 0 to that Q = [0: 0 =6',0"], and let k be a positive

number. Let C be a subset of the sample space such that

(a) L(021,23,,2n) <k for each point (z1,zs,...,3,) € C

L(0";z1,x2,...,T0)

Ley ) 3000y y
(b) _((0”?1;% for each point (z1,z9,...,2,) € C*
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Figure 3.1 Graphical interpretation of the choice of random samples for testing hypothesis Hy
against H;.

(C) o= PT‘[(Xl,Xz,...,Xn) € C;Ho]

Then C' 1is a best critical region of size a for testing the simple hypothesis Hy : 0 = §' against

the alternative simple hypothesis Hy : 6 = 6" [3].

The Neyman-Pearson theorem states that we can form our test of a simple hypothesis on one
parafneter of a given distribution if we can construct a likelihood ratio L(6;z1,zo,...,z,),
based on a sufficient statistic of a set of i.i.d. random variables. Furthermore, if we can find
a constant k such that the size of the test is o, and the constant divides the hypothesis space
into mutually exclusive regions, C' and C*, then the test is a best test of the hypothesis if the
size of C* is as great as with any other test. Intuitively, we may think of the size of the critical
region C' as the false alarm probability o, and the size of the complementary critical region C*
as the probability of detection B, or the power of the test. Thus, Neyman-Pearson gives us a
way of maximizing the detection probability for a given false alarm rate (FAR).

Suppose now that we base our statistic on a sum of i.i.d. random variables. Ideally, we
can compare two random samples of the channelized data and look for a significant difference
between their noncentrality parameters. As in Figure 3.1, it makes sense to take independent
observations of data; one will form the basis of the likelihood ratio for the noise-only hypothesis,
and a second random sampling that will be tested against the first observation. We define
mathematically two observation vectors: Zn, = [Zy,Z1,...,2Zn,] of size Ny and a second

observation ZN, = [ZNg4rs ZNo+r+1)-- - LNo+r+N;] Of size N; where r is a constant chosen to

19




separate the observations by the average rise time allowed by the input bandwidth. By the
Neyman-Pearson theorem, we construct the likelihood ratio as the joint pdf of the observations
Zn, over Zn, which are each i.i.d. distributed chi-square variables. Thus, the null hypothesis
Hj is that the noncentrality parameter Ag estimated from Zn, is equal to the noncentrality
parameter A; estimated from the observations Zy,. Thus, the statistic

| NotrEM

N 4
i=No+7r

F = N
Vo 2 %
J=0
represents the likelihood ratio

F = L(/\lv ZN()-{—T, ZN0+7‘+15 veey ZN0+T+N1)
L(Xo; Zo, 21, - -+, Zn,)

(3.5)

It is worth noting that this method is not optimal under all circumstances. In Chapter 2, we
found the correlation coefficient to be small due to the filtering operations, but this is under the
assumption that the input is i.i.d. Under the Hy hypothesis, the observations Zn, and Zy;, are
independent, and the likelihood ratio constructed from the sufficient statistic of the sum of the
observed data is optimal. However, under the H; hypothesis, there may be dependence due to
the received signal because it is not necessarily a process which is random or independent. In
these circumstances, improved performance can be obtained by coherently summing the energy
and then squaring the result. However, in cases such as the general signal model of Chapter 2
in which we allow a center frequency of the received pulse to be off the center of any band of the
decomposition and we allow phase modulation, or possibly phase drift due to Doppler effects,
this sufficient statistic is near optimal since we can no longer coherently sum the energy across

DFT blocks, and must resort to incoherent averaging to achieve the best performance.

3.2 Detection without Interference

We will now show how the general results of the likelihood ratio above can be categorized
into special cases that yield significant results. We have formed our likelihood ratio from the
Neyman-Pearson theorem, but to achieve a best test we must find some way to calculate the
constant k such that we produce a critical region of size @, while maximizing the power of our

test (.
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Consider the special case of A\g = 0. This could be considered our standard operating mode
under the assumptions made in Chapter 2 as we assumed that the noise was zero mean. Thus,
under the null hypothesis, we are testing A\; = A\g = 0, and wish to reject this hypothesis only
at a significance level . Under these assumptions with the null hypothesis valid, our likelihood
ratio is distributed as

N X%NI/NI

f
X%NO/NO

= Fan, 2N, (3.6)

where F), ,, is the F distribution with 11 and v, degrees of freedom [4]. The F pdf is given by

T | A ) v1/2 uz2
o= oy (2) e s>0 )
BHOACY N
v

Thus, since the distribution of the likelihood ratio is known, we can use it to calculate the

constant
k = FoN, 2Nya (3.8)

where Fon, 2N,;q i calculated from the inverse F cdf such that condition (c) of the Neyman-
Pearson theorem is valid. These F values are easily found in standard tabulations and are also
a part of many mathematics packages including MATLAB, S-plus, SAS, and in C or Fortran
routines. A test of this form is commonly called an F-test and forms the basis of much statistical

theory.

3.3 Optimal Properties of the F-test

This section is primarily interested in explaining in a mathematical sense why the F-test
has desirable properties for FSS detection given the statistics we expect at the output of the
polyphase filter bank. Let us denote the hypothesis Hy such that A\; = 0 under the assumption
that there is no interference and A\ = 0. We denote the n-dimensional sample space V,, as
the vector of observations Z = [Z;, Zs, ..., Z,]. The choice of a test of Hy is equivalent to the
choice of a Borel set C in V,, rejecting Hp if and only if the observed point Z falls into C*.[5]
The power of the test is given by

800" = [ m(2)dz (39

which is a function of the noncentrality parameter and the critical region C* only.
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Definition 3.1 (Uniformly Most Powerful Region) C* is a uniformly most powerful (UMP)
critical region of a given class A if C* € A, and if, for any C* € A, B()\, C*) > B(\,C*) [9].

We know that the power of the test depends on A; only through the intermediary of the means
of the Gaussian variables X and Y of Chapter 2 which are calculated from the amplitude of
the pulse. The multivariate noncentrality parameter is Y p_, A7 = 02\, where X' is any
nonnegative constant. This is equivalent to saying that the power is constant on surfaces

Y A= 0—2,\'2] (3.10)

By = [Al
k=1

The surface By is a hypercylinder whose base is a spherical cone of one nappe [5].

Theorem 3.2 (Uniformly Most Powerful F-test) Among all critical regions C of size a
with the property that the power depends only on \; through the intermediary of o2)\'?, C is
UMP [5].

We now introduce a space of n-dimensional spheres
S(/i’l,filg,. m)‘, )\1sz2 _0' A'1 —Al,A'Q —-AQ, A"n =An (311)

where the constants A’ Tye-- ,fl’n, X' are chosen with only the restriction that ' > 0 and in our
case A’; > 0. We define the average power over the sphere S under the critical region C to be
the integral of the power §(\;, C*) over S. The cylinder B can be expressed as a union of these

spheres [5].

Theorem 3.3 (Average Power Maximization) In the class of all similar regions of fized
size a for testing Hy, C* mazimizes the average power on every sphere S(A’l,z‘ilg, . ,fl’n,)\’)

/5],

The F-test is thus optimal at maximizing the average power of any test for all alternatives
A1 > Mg, resulting in a uniformly most powerful test when we are interested “uniformly” in all
alternatives, represented by a uniform weighting of the spheres. In a case where we are interested
possibly in one alternative over other possible alternatives, the F-test may be suboptimal and
other tests may be superior.

Thus, we find that the F-test has desirable properties for our application. It maximizes

the average probability of detection for all SNRs, when we are interested uniformly in all
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Non-centrality Parameter for a NOMOP Pulse
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Figure 3.2 Noncentrality parameter A; as a function of wideband SNR for a NOMOP pulse.

alternatives, implying that we are interested in detecting a 3-dB pulse as much as say, a 20-dB
pulse. In the event that there is a nonuniform preference for detection, the F-test may be

suboptimal.

3.4 Performance of the F-test

The performance of the F-test can be characterized by the power with which it rejects the
hypothesis of noise only, Hp, or equivalently by its probability of detection over the range of
pulse SNRs. To calculate the power function, we must find the distribution of the statistic F
under the alternative hypothesis H; signal present. In this case, we know from our derivation
of Chapter 2 that in the presence of signal, the joint pdf of the observation vector Zn, will
be noncentral chi-squared with some noncentrality parameter A\; > 0. In general, we found
this noncentrality parameter to be a function of the prototype filter H, so we must calculate it
based upon its particular gain and other characteristics. Using the non-orthogonal prototype
filter discussed in Chapter 2, we simulate the range of SNRs relevant for this project, -20-dB
to 20-dB, and find the mean noncentrality parameter for a NOMOP pulse. In Figure 3.2, we
see the noncentrality parameter as a function of SNR, which ranges from .07 for a -20-dB pulse

to 60.5 for a 20-dB pulse. In this case, we have assumed a NOMOP pulse, but the results
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generalize easily to a case where the energy is distributed among more than one channel due to
modulation. In these cases, the apparent SNR in each channel may be less than the wideband
SNR, but the noncentrality parameter will reflect the apparent channel SNR, and the power
associated with the F-test at that SNR will apply similarly.

To find the power of the test, we note that the distribution of the test statistic F is

X, (M) /Ny
X%N0 /No

where F,, . (}) is the noncentral F distribution with v; and v degrees of freedom with noncen-

F = F3n, 25, (N1 1) (3.12)

trality parameter A. The noncentrality parameter as well as the degrees of freedom are heavily
influenced by the lengths of the observation intervals for Zn, and Zn, due to a property of

addition of noncentral chi-squared variables.

Property 3.1 (Addition of x'? Random Variables) Let X; and X, be independent ran-
dom variables distributed as x,2(61) and X.2(82), respectively. Then the sumY = X; + Xy is
distributed as [4]

Y ~ Xomin (61 + 62) (3.13)

For the hypothesis Hj, signal present, this is the distribution of the statistic 7. Thus, the
power of the test, or the probability of rejecting the hypothesis of signal absent when it is false,

is equal to the integral

B\, C") = /k " pe(e) de (3.14)

which is the area under the noncentral F pdf over the critical region C*. This critical region is
the complement of the space C which is the region for accepting Hy when it is true. In general,
the power of the test is dependent not only on the noncentrality parameter but also the critical
region specified by the size of the test o, as well as the lengths of the observation samples N
and Ni. In Figure 3.3 we calculate the power of the test for different sizes ranging from an o

of 1072 to 10~5 and observation intervals N; = 4 and Ny = 64.

3.5 Observation Interval Lengths

From the noncentral F distribution under the hypothesis H; we see that both the degrees

of freedom as well as the noncentrality parameter influence the distribution of the statistic.
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Probability of Detection for Various o with the F Test
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Figure 3.3 Probability of detection (power) of the F-test for various test sizes o and observation
lengths N; = 4 and Ny = 64.

Intuitively, we expect that longer window lengths improve detection probability as they lower
the variance in the statistic 7. In Figure 3.4, we see that as the window length N; gets longer,
the probability of detection improves at low SNR.

However, care must be taken not to overestimate the observation interval length Ny, as this
will result in a reduction in the apparent SNR of a pulse shorter than N;. In such cases, the

apparent noncentrality parameter X will be
A=\ (3.15)

where L is the true length of the pulse. An example is given in Figure 3.5, where a 10-dB,
1.28 us pulse is overestimated by up to 10 times. Notice that even overestimating the window
length by a factor of 2 appears as less than half the true SNR to the detector. In all cases, N;
must be shorter than the observation interval Zy, in order to keep the number of degrees of

freedom sufficient in the denominator of the F-test to achieve reliable results.
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Figure 3.4 Probability of detection (power) for various length of the Zy, observation interval
with Ny = 64.

3.6 Detection in the Presence of Interference

In many practical instances the detector may have to perform in the presence of interference
such as that from continuous wave (CW) carriers due to civilian communications or other
radars that are not interesting for ELINT purposes and are preferably ignored. In general, this
interference takes the form of the pulses we would like to detect, such as in the general signal
model of Chapter 2, but are of longer duration. In this case, to calculate the constant k¥ and
the power of the associated test, we must again find the distribution of the statistic F. In this
case, F is the ratio of two noncentral chi-squared variables and is distributed as

X, (N1 ) /Ny
Xz, (Noo) /No

F = Fyw, o (M, do) (3.16)

where F,:Il,,,z (A1, A2) is the doubly noncentral F distribution with degrees of freedom »4 and v,
with noncentrality parameters A\; and Ap. Essentially, the F tests previously were generalizations

of this distribution with one or both noncentrality parameters equal to zero. The doubly
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Apparent SNR Due to Overestimated Observation Interval Length
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Figure 3.5 Apparent SNR of a 10-dB pulse 1.28 us long caused by overestimating the obser-
vation interval length up to 10 times.

noncentral F PDF is given by

1/]+1/2 Zyr LORTW |
ppi(z) =€~ 2(,\1+,\2)ZZE/\1, E(\,s) 1(-'(1 +7‘+3)) <ﬂ>2 T2

(4% T(x +2 m_{. +
r=0 s=0 2 ) (2 1_*_5;2: 7 YTTS
(3.17)
where
(3"
E(\m)=—2 (3.18)

I'(m+1)
valid for £ > 0 and Ay > Xg [6],[7]. In this case, under both hypotheses, the statistic is
distributed as F", with A\; = )¢ under Hy, and A\; > )¢ under H;. To find the constant k
in the Neyman-Pearson theorem, we note that a property of F” is that for \; = )g, as under
the null hypothesis, F” reduces to the noncentral F distribution F’, allowing easy calculation
of k via mathematics software, as in the case of the F-test. However, for the general case
of an unknown SNR interferer, the noncentrality parameter Ay must be calculated from the
observations of Zn,. Given the moment generating function of x,2()\), M(t;v,)) it can be
shown that the sample mean is

OM(t;v, )

X =
ot =0

=v+A (3.19)
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Figure 3.6 Mean noncentrality parameter and probability of detection (power) of the noncen-
tral F-test for various test sizes o and observation lengths N; = 4 and Ny = 64 in the presence
of a 2-dB CW interferer.

giving a consistent estimator for Ag as Xo = X — 2. This test is commonly referred to as the

noncentral F-test. As in the case of no interference, the power of the test is calculated as
o0
B0, CY) = [ peo(a)da (3.20)
k

using numerical integration. In practice, the numerical simulation of Equation (3.17) is sensitive
to both the magnitude of A; as well as to the upper limit of summation over r and s. For large
A1 it will not converge to a meaningful distribution, and an appropriate upper bound for r and
s is approximately 30 to 50.

The power calculation is complicated through the possible constructive or destructive inter-
ference of the interferer with the desired pulse. Under the assumption that the initial phases
of both the interferer and the pulse are independently uniform on the interval [0,27), it is
possible to achieve anywhere from totally constructive to totally destructive interference. As
such, unlike the previous cases, even a NOMOP pulse will have a noncentrality parameter \;(t)
that is a function of time. As an example, simulation was used to find the mean noncentrality
parameter of a 3 us pulse in the presence of a 2-dB interferer when both the interferer and
desired pulse have unknown initial phase. In Figure 3.6, the power of the noncentral F test is

calculated using simulation. The values are only approximate and are subject to the variance of
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numerical integration and the fluctuation of the estimated mean of A\;. However, it is instruc-
tive in that it shows how detection is severely influenced by interferers, as desensitization of the
receiver results. Even though the noncentrality parameter for a 20-dB desired pulse is large,
the noncentral F-test performs poorly because of the nonlinear relationship of the noncentrality
parameter to the shape of the distribution. Even at large SNR, we cannot achieve sufficient

separation between the F” PDF under the H; hypothesis and the F’ PDF of the Hj hypothesis.

3.7 FPGA Implementation

For the optimal FSS tests presented in this chapter, FPGA implementation is relatively
efficient. In the case of the F-test, a single value of k can be stored and is applicable to all tests,
but in the case of an interferer, there will be a critical value k for every SNR possible for the
interferer. This is not a problem for FPGA implementation as the noncentrality parameter is
calculated from the sample mean and the corresponding critical value is fetched from a lookup
table. For the FSS detectors presented here, the operation count yields Ny + N; additions, two
multiplications, and two divisions. The divisions are most easily accomplished via bit shifting

when Ny and Nj are of the form 2.
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CHAPTER 4

SEQUENTIAL DETECTION METHODS

In Chapter 3 on fixed-sample-size methods, the underlying assumption was that in order
to implement an FSS test, we must know the fixed-sample-size that fits the data. In ELINT
applications, this is precisely the value that has the least a priori knowledge attached to it. We
make assumptions regarding the bandwidth, center frequency, and modulations we desire to be
captured, but the length of pulses is less well known. We only assume that the shortest pulse
will be one sample long, and a longest pulse designation is only for the convenience of excluding
CW carriers from our data collection. As such, there is no one “best” fixed-sample-size with
which to accomplish detection. FSS methods perform poorly when the observation interval
is wrong, by either reducing the effective SNR of received pulses, or performing suboptimally
when the window length is too short.

A sequential test attempts to rectify this situation. In this method, after each observation
one of three decisions is made: accept hypothesis Hy, reject hypothesis Hy, or continue the test
with another observation. As such, the length of the test n is a random variable, dependent
on the data. For ELINT applications, this is particularly of interest as the testing procedure
adapts itself to the data being received. Intuitively, we would assume that for a high SNR
pulse, we may not need as many observations to reach a conclusion, but for low SNR pulses,
provided that the pulse is of sufficient length, we could improve performance by allowing the
test procedure more samples upon which to make its decision.

The difference between FSS methods and sequential methods is seen most intuitively by
noting the way in which each partitions the parameter space. In the last chapter, we denoted
the critical region C as the area under which the acceptance of Hy was strongly preferred. In

general, let us define an n-dimensional parameter space by R,. In FSS testing, according to
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Figure 4.1 FSS partitioning of the N-dimensional parameter space into two mutually exclusive
regions corresponding to the size and power of the test.

the Neyman-Pearson theorem, for a fixed size , we maximize the power of the test 5. Thus,
we have split the parameter space into two mutually exclusive regions. For a fixed test of
length N, R?V is of size o and is the zone of preference for acceptance of Hy, and R}V is the
zone of preference for rejection of Hy. In general, it is a decision rule D which partitions the
parameter space in this way by means of a sufficient statistic and critical values associated
with the boundaries of each space. Graphically, we represent this process by a transformation
D which takes the observation space Z and projects it into our divided parameter space to
make a decision, as in Figure 4.1. Now, let us consider the partitioning of the parameter space
under sequential procedures. Here, the space is divided into three mutually exclusive regions.
Since the test length n is a random variable, the parameter space changes dimension with each
successive sample, as do the shapes and sizes of the critical regions. We define another decision
rule D* which takes the sample space and projects it into one of three regions. The first region
is the zone of acceptance of Hy and is denoted by RO, which can be any size, as in the Neyman-
Pearson formulation. Similarly, we have a zone of preference for the rejection of hypothesis
Hy, R}, which, unlike FSS methods, can be made any size, since we now have another region
which can cover all other possibilities. This region Ry, is the region of indifference, in which it
is preferable neither to reject nor accept the hypothesis, but rather to continue observation, as
we are yet unsure, based on the observations, what the correct course of action is. Graphically,
we show the partitioning in Figure 4.2. The intuitive benefit of sequential testing is the ability
to make the critical regions of any size, while leaving the remaining portion of the parameter

space to a zone of indifference. In this paper, we will only consider tests which have probability
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Figure 4.2 Sequential test partitioning of the parameter space into three mutually exclusive
regions, the zone for preferable acceptance of Hy, the zone for preferable rejection of Hy, and
a zone of indifference where more observations are taken until absorption.

1 of terminating. In other words, we may think of sequential methods as a way of adaptively

computing the test size based on the data, which is a desirable property for ELINT.

4.1 Sequential Probability Ratio Test

So far, we have not said how these tests are constructed or what their properties are with
respect to test length and SNR detection performance. In pulsed radar detection, the test
length is important to the performance of our receiver. For example, if optimal sequential
detection required 40 samples to detect on average, but on average we only expected to receive
20 samples from each pulse, then we would conclude that despite its benefits, sequential testing
does not perform to the required standard. Sequential testing methods are primarily the result
of work by A. Wald [8] who is considered the originator of much of the statistical theory
regarding sequential testing. However, the idea of sequential detection has been developed by
several others including Page [9] and Lorden [10]. The basic theory behind sequential testing
will be drawn from their work, and we will leave out some of the finer mathematical points
not of particular interest to us, but will point out where more information regarding certain
peculiarities can be found in these works.

Let Ln(0; Z1, 22, ..., 2Zy) be the likelihood of the observed samples Zy, = [Z), Zs, ..., Zy]
coming from a distribution with parameter §. Then we could construct a likelihood ratio for

testing the probability of a sequence of observed points to determine whether they were more
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likely to come from one of two possible distributions, as in

Ly (0§ Zn)

n\“ ~n

(4.1)

where the null hypothesis distribution parameter is assumed to be zero in the signal-absent
case. This is not in general necessary, as signal absent may be a distribution whose parameter
is not zero, but the results are general to any distribution with any parameter, provided that it
is a complete family of distributions. The length of the sample set Z,, is a random variable as
in all sequential procedures. We now define our decision rule D* such that we continue taking

observations whenever
B<li(0;Zy) < A (4.2)
for two positive constants .4 and B provided B < A. If
In(6;Z,) < B (4.3)
the test is terminated with the acceptance of Hy, and if
In(6;Zs) > A (4.4)

the test is terminated with the rejection of Hy. In this manner, we divide the parameter space
into three mutually exclusive regions with regard to our preference for acceptance and rejection,
as well as the zone of indifference. The likelihood ratio I,(6; Z) can be expressed as the joint

pdf of the samples of Z, as in

(0 %n) = 20 f(Z0,0) - 7 (Zn0) (4.5)

where every sample is i.i.d. with marginal pdf f(Z;,6). Suppose that we were to take the

logarithm of the likelihood ratio to produce

f(Zl’e) f(ZZ’e) f(Zn)H)
logl,(8;Zy) = lo +lo +---+4lo 4.6
Bln(0:2n) = lo8 517 5) T F(Z,,0) 8 F(Zm0) (46)
We will denote the ith term of this sum as
Z;,0

Z; = 10
® 1(Z:,0)
We can reformulate the decision rule D* by replacing the constants 4 and B with log A and

log B to achieve the same partitioning as above. If

logB<zi+2+ - +2,<log A (4.8)
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then continue the test with sample statistic 2,1, but if

zZ1+2+4+ -+ 2, <log B (4.9)
the null hypothesis is accepted, and if

z21+23+ -+ 2z, >log A (4.10)

then the null hypothesis is rejected. This test is referred to as the sequential probability ratio
test (SPRT) as developed by Wald [8].

4.2 Determining A and B

As in constructing all statistical tests, we must determine the critical constants that ap-
propriately size the parameter spaces RS, R., and R,. Consider first the rejection of the null

hypothesis when
I.(6,Z,) > A (4.11)

Essentially we are saying that the joint probability measure f(Z1,6)f(Z2,0), - , f(Zn,0) is at
least A times as large as the probability measure f(Z,0)f(Z2,0),---,f(Z,,0). We defined
earlier the power of the test as § when H; is true, which is the probability of rejecting the null
hypothesis when it is false. However, there is associated with that the size of the test oz which
is the probability of rejecting the null hypothesis when it is true, or a false alarm. The joint
probability measures above therefore state that for the hypothesis to be rejected, the power

must be A times the false alarm probability. Thus, we generate the following inequality:

A< s (4.12)
a
Similarly, for a case where the null hypothesis is accepted,
1(6,2,) < B (4.13)

The probability measure under the null pdf must be % times as large as that under the alter-

native pdf. Associating the power and size of the test with this inequality we get

1-8
>
B"l——a

(4.14)

34




These inequalities yield the bounds of the constants, but we are interested more in determining
their values for practical application.! For the above derivation we have found inequalities, but
what is the outcome if we were to set the constants A4 and B to equalities in practice. It is
sufficient to say in this instance that the determination of the exact power and size based on
any two constants is quite tedious. Wald provides a method for this type of calculation, but also
finds that for the strict equality, the size and power of the test do not change by an appreciable
amount when the test is untruncated. The problem in determining the exact error bounds lies
in what is called the “excess over boundaries” problem. In the above derivation, we assumed
that the for the size and power of the test to have exact values @ and 3, we achieved the bound
A or B with strict equality. However, this might require a noninteger number of observations.
When we are restricted to integer observations, as we always are, we may exceed the boundaries
by a small amount, either decreasing the size or power of the test. Strict equality of the above
constants to their derived values does yield one bound that is exact. That is, for a choice of

A="2 (4.15)

«

and
(4.16)

either the size or power of the test will be exact, and the other will be decreased by a small

amount due to the excess over the boundaries.

4.3 Operating Characteristic Function

In FSS methods, the probability of detection is a function of the size of the test and the
limiting distribution of the likelihood statistic F. This is easy to find and simulate via math-
ematical software because the length of the test is fixed. For séquential methods, however, in
which the observation interval is itself a random variable, the distribution of the statistic is a
function of the interval and the decision function. As such, asymptotic approximations to the

actual performance of the test are the methods by which the tests are characterized. Suppose

J‘The reader familiar with Wald’s work may notice the difference between Wald’s bounds of 4 = —-é and
B= from those presented here. There is no difference, however, except in notation. Earlier, we presented
the power of the test as 8, but in Wald’s derivation the power of the test is 1 — 2 with 8 being the probability
of a Type II error. Thus, we have used 8 here to denote power to be consistent with earlier sections, but the
bounds remain the same regardless of the different formulation.
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we have a function £(f) which is the conditional probability of accepting hypothesis Hy at the
parameter point 6. Then for no signal, or # = 0, £(#) = 1 — o and is otherwise a function of
the parameter 6, £(6) = 1 — §(6). Thus, the probability of detection for 6, or the power of the

test, is
B(6) =1— L(6) (4.17)

We may specify one value of 3(6) at a parameter point § = 6, to yield the bounds A and B.

To determine £(0), consider the statistic

[L(el;zn)]”“’

—_L(O; Z0) (4.18)

where, for every value 6, the value of h(6) is determined such that the expected value of

Equation (4.18) is 1, as in

00 i h(6)
/_oo [ﬁ(g;;’zz:))} L(6;Z4) dZp = 1 (4.19)

which was derived by Wald [8]. It follows that the integrand of Equation (4.19) is a distribution
of Z,, which we denote by

. h(6)
[(Zyn) = {%Ol’zz;n)—)] L(6;Z,) (4.20)
Let H denote the hypothesis that
L(0;Zn) = f(21,0)f(22,0) -+ f(Zn,0) = f(Zn,0) (4.21)

is the true distribution of Z,, and H* the hypothesis that f*(Z,) of Equation (4.20) is the

distribution of Z,. Consider a SPRT which continues taking observations when

B0 <« %z(f% < AMO) (4.22)

accepts H* when the ratio is greater than or equal to A™M? and accepts H when the ratio is

less than or equal to B*®). From Equation (4.20),

[*(Zn) _ [L(62:Z0)]" 423)
7@ 0) | L0:Z) “
so that Equation (4.22) can be rewritten as
L(61;Zy)
B< m;)— <A (424)
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which is the standard SPRT derived in Section 4.1.

If the test between H* and H results in the acceptance of H*, then Equation (4.24) implies
the acceptance of H;. Likewise, the acceptance of H implies Hy. It follows that £(0), the
probability of accepting Hp, given 6 = 0, is the same as L(6), the probability of accepting H
when f*(Zy) is the true distribution. To calculate £(6), let o’ and ' be the size and power of

the test of H* versus H, respectively. It follows that

4
ARO) = % (4.25)
and
1-74
h(8
B = T—o (4.26)
Solving for o' and noting that
L) =1-d (4.27)

the operating characteristic function (OCF) is given by

AMO) 1

when we neglect excess over boundaries as before.

4.4 Average Sample Number

Given the OCF derived in Section 4.3, we can use that information to determine the average
number of samples required for detection depending on a particular implementation of the

SPRT. Let
Zn=10gl(0;Zn) =21 +20+ -+ 2, (4.29)

as in the log-likelihood formulation of the SPRT in Section 4.1. The test procedure is as usual
for a SPRT: reject Hy when Z, > log A, accept Hy when Z, < log B, and continue the test
when log B < Z, <log A. If we calculate the average value of Z,, at a test that has terminated
at length n, and we neglect excess over boundaries, then the expectation is given approximately

by log B times the probability of accepting Hy plus log A times the probability of rejecting Hy,

E(Z,,0) = L£(0)log B+ [1 — £(8)]log A (4.30)
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From the equation for 2,
E(Z,)=E(z1+ 2+ -+ z,) = E(n)E(z) (4.31)

for independent 2;, from i = 1,...,n, giving E(z) = E(21) = E(2) = --- = E(z,). Thus, we

denote the average sample number (ASN), 7 = E(n) as

7 = B(n) = L(0)log B +E[%Z; L(6)]log A

(4.32)

Given the OCF of a particular sequential test, we can use that to find the average number
of samples that will be required for a particular decision, either the acceptance or rejection
of Hy. This will be useful to us later in the design of sequential tests to achieve the desired
performance, and as a way of characterizing their effectiveness versus other sequential tests or

FSS tests.

4.5 Cumulative Sum Tests

Suppose that we are only interested in a one-sided hypothesis test; for example, we only
wish to detect the acceptance of H; regardless of the times when Hy is accepted. Or, consider
the possibility that we want a test for multiple hypotheses. In these cases, one implementation
of the SPRT becomes useful, the cumulative sum test, or CUSUM test. The CUSUM was
originally discovered during manufacturing processes when the quality of the output slowly
drifted with time, and FSS estimators were unable to detect the slow change. The CUSUM
relies on the properties of the logarithm in the log form of the SPRT in that for a single point
that is more likely noise than signal, the likelihood ratio will be less than one, resulting in a
negative log. For the contrary case, where the point is more likely to come from signal than
noise, the likelihood ratio is positive. Thus, for periods in which noise is the predominating

factor, the slope of a cumulative sum of each likelihood ratio point
Zn=z21+2z+ - +2, (4.33)

will be negative, and a positive slope will result from a signal present. Thus, let us only concern

ourselves with the bound associated with rejection of Hy, namely when

Z, > log A (4.34)
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We denote the cumulative sum by the notation CUSUM(k,i) where
k
CUSUM(i,k) =) 2z = Z — Z; (4.35)
t=i

In the case of the cumulative sum, there is never an acceptance of Hy; the test merely continues
until there is some rejection of Hy. To determine the stopping time of this statistic, we cite
the work of Lorden [10]. Lorden determined that any difference between the current CUSUM
value and any previous value that exceeds Wald’s threshold log A would result in the same

performance as that of the standard SPRT. Thus, the stopping point is the first point such that
ny=inf [k >1: Jnax CUSUM(i, k) > log A (4.36)
, <i<

Using this method, we achieve the same results as the standard SPRT, but in some cases it
results in a simplified implementation, when the acceptance of Hy is not important. As an
example, in Figure 4.3(a),(b) we show the CUSUM as it would be formulated for the detection
of a shift in the mean of a Gaussian process. We insert a shift in mean from the 1000th to the
2000th sample. During that interval, the CUSUM generates a positive slope. In Figure 4.3(c),
we show graphically the interpretation of the stopping rule of Lorden, Equation (4.36).

One other advantage of the CUSUM rule is that we can use it as a multihypothesis testing
statistic. Consider the problem of estimating the time of arrival (TOA) of a puise as well as
the time of departure (TOD) or end of the pulse. In the standard SPRT, there is no good way
of knowing the time of return to the previous statistics. However, for the CUSUM test, we can
find the bound easily, by looking for a negative slope that satisfies Wald’s bounds. Thus, as in
Figure 4.3(c), we find the first point such that

ng =inf |t > Ny : max CUSUM(i, k) < —log A (4.37)
1<

The cumulative sum test is important for ELINT applications as it gives us both the beginning
and end of the pulse with similar error bounds. It also alleviates the problem of the SPRT
alarming multiple times within a pulse. Since the SPRT resets itself at the acceptance or
rejection of Hy, in the duration of a long pulse, we may expect the SPRT to alarm multiple
times, which causes needless extra complexity to other processes which rely on accurate TOA

times.
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Gaussian Shiftin Mean Process ' CUSUM Output
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(a) Gaussian Shift in Mean Process (b) CUSUM

log A

Detection Point

(c) Stopping Rules

Figure 4.3 (a),(b) Example of CUSUM output for a Gaussian shift in mean process from the
1000th to the 2000th sample. (c) Graphical interpretation of the stopping rules.

4.6 Optimal SPRT Tests for Detection without Interference

In this and all future sections, we will address the SPRT in general, but the results are
applicable as well to the cumulative sum implementation of the SPRT, and the performance
characteristics in terms of detection probability and average sample size are identical. We now
address the problem of finding a SPRT test suitable to a particular set of statistics. This
involves mainly the derivation of the appropriate log-likelihood ratio statistic, and setting the
power of the test at a certain parameter point 8y so that the test achieves desirable results on

average.
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4.6.1 Gaussian SPRT

As an example that will be influential later in this paper, let us derive the log-likelihood
ratio statistic in the case of a Gaussian process where we wish to detect a shift in the mean,
assuming the variance of the noise to be constant. The likelihood ratio test for a Gaussian

process is of the form

Ly
1(Z;;601,00) = Y22 (4.38)
'Vl (Z;—80)2
v I
where the log-likelihood is given by
Z2; = log 1(25;91,90) = % (Zi - 90 - g) (4.39)

where ¢ = 0; — 6y and after a series of algebraic manipulations. The test is defined as the sum

of these variables, Z, = 21 + 2 + -+ + 2z, as in

Z, = % ; (Zi — 6 — %) (4.40)

This test is particularly attractive to FPGA implementation due to its ease of implementa-
tion, requiring only an estimate of the variance and the mean, as well as additions and two

multiplications. This results in relatively little complexity for implementation.

4.6.2 Chi-Squared SPRT

From the section on the polyphase filter bank, we know that our actual statistics are chi-
squared random variables. In order to implement the optimal sequential test, we must first
derive the log-likelihood ratio as in the case of the Gaussian test. Thus, for a parameter 6,
which in actual cases is the noncentrality parameter )y, we find that the likelihood ratio is of

the form
WZi M) = —5—5— (4.41)

For this derivation we adopt the noncentral chi-square distribution formula developed by Fisher

[11]

p(@,)) = %e—”? Lo(V>a) (4.42)
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where Ip(z) is the modified Bessel function of the zeroth order. Taking the logarithm and

canceling terms, we get

A
z = —7‘1 + log Io(v/3Z;) (4.43)

This SPRT statistic is optimal in the sense of fitting the expected statistics of the output of the
polyphase filter bank. However, for FPGA implementation, the results are nearly impossible to
implement because of both the logarithm and the modified Bessel function. Both of these would
have to be stored in lookup tables that are expensive in resources to implement. However, let us
look at reasonable approximations to the optimal solution. Suppose we expand the logarithmic
Bessel function in a power series contingent upon a weak signal in which A << 1, which gives

us

)VERDY A2
s=—5+Zi- G—ZZ’2 +0(\jZ) (4.44)

It may be noticed that the third term in Equation (4.44) contributes to the bias of z;, and
without that contribution the average sample number approaches infinity for hypothesis Hy.
Keeping the terms up to second order results in the need to square each output value. This is also
unacceptable in FPGA implementation because of the excessive number of bits that are needed
for the computation. A conservative estimate on the output of the filter bank would be 16 bits
for an accurate representation of the dynamic range of the input to the ADC. Implementing
this form of the SPRT would require us to nominally keep 33 bits for the SPRT, which is
far too many to provide efficient implementation. The assumption that A << 1 is actually
a very reasonable approximation for FPGAs, as a common method is to use fractional two’s-
complement representation internally. In this method, the numbers are stored in a fractional
context with the maximum absolute value of 1. Thus, any noncentrality parameter that does
not overflow the ADC would necessarily be less than 1, and much less than 1 in the case of all
but the highest SNR pulses where the approximation need not be so accurate as those pulses
are easy to detect.

Let us continue approximations that may yield a useful result. From the properties of the

chi-squared distribution it can be shown that

E(Z)=2+ ) (4.45)
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and
E(Z}) =8+8)+ )2 (4.46)

Thus, for a received signal with noncentrality parameter ), the expected value of the test

statistic is

PHNDY
E(z|)) = % - —éi (4.47)

when terms higher than second order are ignored due to the negligible effects when Ay << 1
and A << 1. The second term in the approximate expectation is the average bias contribution
of the squared Z; term in the small signal expansion. Suppose now that we keep only the first
two terms of the small signal power series and the average contribution of the bias of the third
term. It may then be shown that the test will terminate with probability 1; however, average
sample numbers with the approximate test may be longer than the optimal implementation

using the true bias term or even an exact modified Bessel function. We now have that

> et (4.48)

For FPGAs, this approximation is attractive because we have made no assumptions that will in
general be violated for our standard operating conditions, and we have reduced the complexity
of the implementation to a manageable level. But the question is, what does this approximation
tell us? Let us denote the mean of a chi-squared random variable with two degrees of freedom,
as at the output of the polyphase filter bank in the case of noise, as iy = 2 and the variance of

the same variable as 0>2< = 4. Rewriting Equation (4.48) in an equivalent form we have

5= j—g (2= - ¥) (4.49)
which is exactly equivalent to the Gaussian SPRT statistic of Equation (4.39). Thus, through
the small signal approximations we have concluded that the limiting distribution of this set of
statistics is Gaussian. This is an important conclusion, as we have derived an optimal small
signal chi-squared detector that is equivalent in performance to a Gaussian detector as would
be implemented in a coherent detector where the phase of the signal is known. As such, we
expect that the test will achieve results that are comparable to matched filter outputs in the

case of small signals and fractional two’s-complement binary arithmetic.
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To characterize the performance of this test, we now derive the OCF of the implementation
of the SPRT in Equation (4.49) with the methods described in Section 4.3. As such, we wish
to find A(A) such that

® [L0w; zn)J ")
_— L(A\2,)dZ, =1 4.50
[ Ze7s] sz, (450
Using the small signal approximations above, it can be shown that the solution to this equation

is approximately

A
h(A) ~1-22 (4.51)
Ad

which, it is interesting to note, is the same h(6) that can be derived from the Gaussian SPRT
[12]. Thus the OCF for this test is given by

A1—2A/Ad _— 1
T AI_2a — Bl-2A/Aq

L) (4.52)

With the OCF, we can also derive the average sample number using the expected value of z;

from Equation (4.47). As in Equation (4.32),
L(X)log B+ [1 — L(A)]log A

i = WY (4.53)
4 8

4.7 Performance and Design of SPRT Tests

For general SPRT tests, we have so far shown that the performance is based both on the
critical bounds A and B as well as the design parameter 6. In the case of the chi-squared
SPRT, the design SNR, represented by the design noncentrality parameter A4, is an important
consideration, as well as assigning the power of the test at that SNR. Usually, the probabil-
ity of false alarm is fixed in any application by practical considerations of data volume. In
this project, the design value was a FAR of 10=% and we will use that value for subsequent
calculations, although the design methods apply to any FAR. It can be seen from the section
on determining the critical constants that one of the advantages of the SPRT is the ability to
design an arbitrarily powerful test at any design point. We can pick any 3 at any design point
Aq without restriction except that 0 < 8 < 1.

However, there are several considerations that the designer should bear in mind when con-
structing these tests. High power intuitively means that we are accepting a high average sample

number as a trade-off. In fact, it will be seen that the ASN of a SPRT is highly nonlinear, and
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in some respects can only be a component of designing tests by trial and error. Let us outline a
general method of design and provide some examples that will give insight into the important
considerations when designing these tests.

In practical applications, it is often important that we achieve detection in as little time as
possible, and it has been shown by Wald that the SPRT minimizes the time to detection of any
test, when the optimal likelihood ratio is used [8]. Often, we must sacrifice test power to achieve
a reasonable detection time. In the case of FSS methods, it was shown that overestimating the
observation interval resulted in reduced SNR. In the SPRT, the effect is similar, except that
the effect is not on SNR, but on time to detection. If the time to detection is on the average
too long, then we run the risk of coming to the end of a pulse before detection. This problem
motivates the first step in SPRT test design.

Let us define a general SPRT test S that is implemented in the standard method. For
each 8 on the range from 0 < 8 < 1 we can calculate the average sample number associated
with a received signal at the design parameter \q. For increasing power, we expect increasing
average sample numbers. Let us define an average sample number n; which is the desired time
to detection for a pulse at SNR commensurate with the design point. From the curve of power
versus average sample number, we can read off the maximum power that can be achieved at
the design ASN of ng. To verify that system performance is adequate, we compute the OCF
and ASN for the SPRT test S given the power found from the design ASN, and verify that the
system responds appropriately at all other SNRs.

Consider the example of the chi-squared SPRT with a design parameter of -5-dB and a
design ASN of 8. In other words, we would like to design a test that alarms on the output of
the polyphase filter bank and achieves on average a detection time of 8 samples for a -5-dB
wideband SNR pulse. This is a reasonable design goal, as it amounts to a detection of a -5-dB
pulse that is 2.5 us or greater. We compute the ASN as a function of test power and note,
from Figure 4.4(a), that we can generate a test power of .61 for a design ASN of 8. If we
then compute the OCF and ASN of this test based upon a power of .61 and a FAR of 10~3
at a design SNR of -5-dB, we can verify that the performance of the test at all other SNRs is
reasonable. From Figure 4.4(c), we see that the average sample number peaks at slightly less
than -5-dB at approximately 9 samples, which is not unreasonable at lower SNR. Thus we may

conclude that this design meets the specifications we imposed at the outset.
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Now, let us consider another design process where we set the design SNR slightly lower, at
-10-dB and a design ASN of 20. If we again compute the ASN as a function of test power, we
see in Figure 4.5(a) that we can achieve a maximum power of approximately .26 for these design
constraints. If we now plot the probability of detection derived from the OCF and the ASN
associated with the test, we can see in Figure 4.5(c) that the design provides an ASN of less
than 20 at all other SNRs, which seems reasonable. However, let us compare the performance of
this design at -5-dB with the design previously where the design parameter was -5-dB. Looking
at the probability of detection for the second design in Figure 4.5(b), we see that at -5-dB we
achieve only a power of .78 at the expense of an ASN that is nearly twice that of the first
design. If we set out with an ASN of 15 in the first design, we could achieve greater than a 95%
probability of detection. Thus, for a lower SNR design parameter we have sacrificed heavily
the optimal performance that could have been achieved at higher SNRs.

This example illustrates an important point. Although we may achieve the design goals of
a particular design ASN and design SNR, we may be unduly sacrificing performance at other
SNRs if we choose incorrectly the design parameters. It is important to design SPRT tests of
this sort through trial and error to achieve acceptable performance at all SNRs. In general there
is no optimal way to design these tests so that all SNRs are arbitrarily powerful with acceptable
ASNs. Therefore, use of these design methods with a range of design parameters is useful to

pick a design parameter that is most favorable in performance over the entire detection range.

4.8 Optimal SPRT Tests for Detection with Interference

As in Chapter 3, we consider the detection of pulses in the presence of CW interference. We
saw in the last chapter that in the presence of interference the noise pdf assumes a noncentral
chi-square distribution, giving the likelihood ratio as

2.2
UZi; M) = % (4.54)
where A is the design parameter, and )¢ is the noncentrality parameter of the interference. If
we use Fisher’s formula for the x,2()\) pdf as we did in the first derivation, it can be shown that
the optimal log-likelihood SPRT test is given by

Ad— Ao (Io( )\de'))
i=— 1 4.
? AV AN wA (4.85)
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where Ip(z) is again the modified Bessel function of order 0. Let us apply the same small-signal
approximations to Ip(z) as before, keeping the first two terms of the power series expansion
and the average bias contribution of the third term. We can then show that the small-signal

approximation yields

Ad— A Ad— A
2= 20700 (7 (g +2) - 2420 (4.56)
4 2
which is exactly the Gaussian SPRT with the mean of the noise correctly given as Ky =24 X
and the variance as a;‘:, = 4. Thus, we may conclude that the Gaussian approximation is

equally valid in the case of CW interference and we need not change critical bounds in this case

to achieve similar performance.

4.9 Comparison of Performance of SPRT versus FSS Methods

Suppose that we want to characterize the performance of the SPRT methods presented in
this chapter with the FSS methods presented in the last. Let us first consider the average
sample size to detection, and see what the trade-offs between each implementation are. We
begin by assunﬁng that we are using a 32-sample window for Zn, and a 64-sample observation
interval for Zn,. We compute the probability of detection using the F-test for detection of
signals with out CW interference. If we then compute the ASN for an SPRT that is designed
to achieve the same detection probability curve, we can compare the ASN of the SPRT to
detection versus the 32 points required for the FSS test. In Figure 4.6 we see that, while the
FSS methods require 32 samples to achieve the same detection probability, the SPRT requires
only a maximum of 7 and in some cases as little as 1 sample.

Now, for a similar sample number, let us compare detection probability. Consider the two
examples presented in Section 4.7, in which we designed an SPRT based upon an ASN design
value and a design SNR. If we design an SPRT in this fashion, and compare its detection
probability with an FSS test with sample size equal to the maximum ASN of the SPRT, what
is the difference in detection probability? In Figure 4.7 we see that in most cases the SPRT
outperforms the FSS tests significantly, except for a small region in the SPRT designed for
-10-dB. Thus, we conclude that in all cases, we can design an SPRT that will be superior to

the optimal FSS test in both ASN and probability of detection.
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4.10 FPGA Implementation

Under the small-signal assumptions, the chi-square SPRT is easily implemented on FPGAs.
If we replace s in the CW interference derivation of the optimal SPRT, Equation 4.56, with
its ML estimate, the sample mean, we can implement one detector for both interference and
noninterference. Likewise, we can replace the variance with an estimate of the variance from the
data to account for other inconsistencies in the true distribution of the observed data. In this
way, we construct a robust detector that is capable of achieving desired performance in a range
of adverse conditions, including interference, nonstationarity, and fixed-precision effects. In
addition, this detector fits the statistics well with no unreasonable approximations and results
in a low complexity implementation. Thus, we conclude that for ELINT applications using
subband channelization based on the DFT, the SPRT is a superior choice for detection over

FSS methods.
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Figure 4.4 (a) ASN of the SPRT test as a function of test power at a design parameter of
-5-dB SNR. The dotted lines show the maximum test power that can be achieved at a design
ASN of 8. (b) Probability of detection and (c) ASN for a design parameter of -5 dB and a

design ASN of 8.
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test as a function of test power at a design parameter of

-10-dB SNR. The dotted lines show the maximum test power that can be achieved at a design
ASN of 20. (b) Probability of detection and (c) ASN for a design parameter of -10-dB and a

design ASN of 20.
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Figure 4.6 (a) Probability of detection for an FSS test of observations Ny = 64 and N; = 32.
The SPRT is designed to achieve the same detection probability. (b) ASN of the SPRT and
sample size of the FSS test to achieve the same detection probability.
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Figure 4.7 (a) Probability of detection for SPRT and FSS methods based on a design SNR
of -5-dB and design ASN of 8 for the SPRT, and a FSS sample size of 9. (b)(a) Probability of
detection for SPRT and FSS methods based on a design SNR of -10-dB and design ASN of 20

for the SPRT, and a FSS sample size of 21.
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CHAPTER 5

CENTER FREQUENCY AND BANDWIDTH ESTIMATION

As a further requirement of this project, we are charged with determining the bandwidth
and center frequency of a detected pulse for output to further processing elements that will

digitally modulate the signal to baseband and adaptively decimate the signal to the matche’

——

bandwidth estimate of the modulation. If possible, we would like to exploit our estimators used
for detection to implement bandwidth calculations.

There are important design goals and limitations to the bandwidth measurement scheme.
We desire to provide the system with dehop/dechirp functionality. In other words, we would
like to follow the center frequency of the pulse in the case that it is linearly modulated as in
the case of LFMOP, or in the case that it takes randomly assigned frequencies as in the case of
a hopped NOMOP signal. The limitation imposed upon this functionality is that we can only

update the digital baseband modulator on a 1 us basis.

5.1 FSS Detection Bandwidth

Given a 1 ps basis and a decimation rate of 32 in this project after the DFT, th;a best
we can do at an integer sample size is 4 subband samples, representing a 1.28 us update rate
in the undecimated data stream. Thus, our goal is to update both the bandwidth and center
frequency every four subband points after detection, and make that information available for
further processing. For the FSS detection methods of Chapter 3, the bandwidth estimation is
a further application of FSS methods. Let us define our TOA detection point as 7. We would
like to retain only statistically significant energy in each channel at a specified confidence level
apw. For this, it seems reasonable to implement the F-test based on four observations from the

pulse against Ny observations of the noise, just as in the FSS scheme presented in Chapter 3.
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Thus we calculate the statistic

K( )+3
9 Zz I::’z:)

1\/0 ZNO i

where K(z) = [T, T +4,T +8,...] encompassing every fourth point from the TOA to the end

F= (5.1)

of the pulse, and ) N, Zi indicates the sum of all points in the window Ny for the calculation

of the noise background. Then, if the statistic
F 2 F8,2N0;a13w (52)

we may conclude that there is statistically significant energy in that channel over 1.28 us
to be included in the significant bandwidth. Similarly, in the case that detection is made in

interference, the critical bound is given by the noncentral F test.

5.2 SPRT Detection Bandwidth

In the case that the detector is based upon SPRT methods, as is preferable, we would like
to exploit that statistic to perform bandwidth estimation without having to recompute FSS
statistics. Under the small-signal model, we have an implementation which takes the current
point and subtracts an estimate of the mean along with an additional factor based on the
design SNR. If we implement the SPRT in the cumulative sum fashion, we notice that this
particular implementation is nothing more than an approximate average short-time Fourier
transform (STFT) as a result of the polyphase filter bank. The averaged STFT is referred to as
a periodogram and is a common method for reducing the variance of the DFT of a stationary
process. Thus, to determine significant bandwidth, we need only see which averaged CUSUM

point exceeds the background energy level. Consider the statistic
U=CUSUM(K(z)+3,1) - CUSUM(K(z),1) (5.3)

where K(z) is the same as for FSS estimation. Over a range of four samples, if the CUSUM
detects a more probable signal than noise, the slope will be positive on average, and if it is more
likely noise than signal, it will be negative. Thus, a reasonable bandwidth estimation scheme

would be to construct these statistics with a critical bound of 0. If

u>0 (5.4)
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then we conclude that there is significant energy in that channel. In this case, since we are using
a mean estimate for the noncentrality parameter of the interference in the case of detection in
interference, it may be necessary to subtract an additional confidence factor from the statistic

U to account for the variance in the estimate of the background noncentrality parameter.

5.3 Advanced Bandwidth Estimation Methods

It is possible to apply advanced methods to the bandwidth estimation problem to determine
modulation and other interesting factors about its behavior, but these methods are too complex
to implement in today’s FPGAs. We provide a note here about some interesting methods that
may be possible in the near future when this amount of complexity can be implemented. Under
the small-signal model, we can roughly approximate the statistics as being Gaussian. This
approximation allows a whole body of theory dealing with the analysis of variance (ANOVA)
to be exploited for bandwidth detection. Under these models, we would be able to say, for
example, whether there is significant energy in any number of channels simultaneously, or
whether interaction between these channels at any stage of detection is significant. This is a
powerful method for determining modulation. We can use methods by Scheffe [5] to construct
confidence intervals for energy contained between and within channels, as well as models which

would explain the interaction over time between channel background noise and the signal energy.

5.4 Excluding Pulse on Pulse Detection

In general, there are two ways of determining the bandwidth of a signal: one would be
to take the total bandwidth encompassing any channel with significant energy, and the other
would be to take only the bandwidth that is coherently distributed, i.e., occupies adjacent
channels. We define a pulse-on-pulse situation as that in which there are two pulses occurring
simultaneously with at least one band of separation between their effective bandwidths. In
some cases, we would prefer to detect and estimate the bandwidth of only the highest-SNR
pulse, eliminating the other through the adaptive filtering process.

To eliminate a pulse-on-pulse bandwidth expansion from occurring, we would like to detect
only coherent bandwidth, where the energy is distributed among adjacent bands. Therefore,

a logical approach would be to start with the channel of highest energy and look out in both
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Figure 5.1 Bandwidth calculations excluding pulse-on-pulse occurrences.

directions, towards Nyquist and dc, until the statistic I/ has a value less than zero. Thus, in the
case that pulses coincide and are separated in bandwidth by at least one band, we can alarm

on the highest-SNR signal. We can see in Figure 5.1(b) that the simultaneous pulse is ignored
and the bandwidth of the highest-SNR pulse is retained.

5.5 Pulse-on-Pulse Bandwidth Detection Problems

While the pulse-on-pulse bandwidth calculations exclude typical simultaneous pulse matched
bandwidth problems, they also cause problems with the bandwidth detection of certain kinds

of MOP pulses in which the energy is not coherently distributed. As an example, we show a
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Figure 5.2 STFT from a PSKMOP pulse.

typical periodogram from a PSKMOP pulse. In Figure 5.2 we see that although no pulse-on-
pulse behavior is occurring, the modulation bandwidth will not be correctly identified given
the noncoherent distribution of energy among the subbands. Thus, we conclude that a better
strategy for capturing the true modulation bandwidth is to choose a bandwidth that covers
all of the significant energy in any subband, which we call the min/max bandwidth estima-

tion scheme. In Figure 5.3 we use the min/max bandwidth estimation to capture the true

bandwidth of the modulation. In the case of a true pulse-on-pulse situation, the result would

be the detecting and encompassing of bqth pulses in the matched bandwidth. Either of the

methods discussed for measuring the bandwidth may cause problems depending on the nature
of the post-detection processing. Thus, only an application specific choice can be made be-

tween the merits of excluding pulse-on-pulse bandwidth at the expense of degraded PSKMOP
performance.

5.6 Decimation Rate Stabilization

Because of FPGA implementation and our high input clock rate, the ability to filter the

signal to matched bandwidth and then decimate causes important gains in FPGA resource usage

as well as the volume of data produced. An adaptive decimator can achieve good performance

at matching the pulse bandwidth; however, it is clear that switching the decimation rate in

the middle of the pulse will cause unwanted transients and a differing time-frequency scaling
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Figure 5.3 Bandwidth calculation using the min/max bandwidth.

throughout the pulse. As such, though we are capable of achieving a 1.28 us update rate on the
tuning of the adaptive decimator, it is unwise to change decimation rates inside a pulse. Thus,
we seek some method to calculate a “best” bandwidth that encompasses the maximum amount
of energy in the pulse. To do this effectively, the best method would be to take snapshots of
the bandwidth of the pulse every 1.28 us and choose the greatest bandwidth to be sure to
capture all the energy over the length of the pulse. Because of FPGA memory limitations, we
cannot, in the event of long pulse widths, buffer the entire pulse data. Thus, beginning with
the TOA of the pulse K(1), we must calculate a new bandwidth every fourth point using the
methods of pulse-on-pulse estimation or min/max estimation. Since there will be some variance
in the estimate, we would like to take multiple observations of the bandwidth and choose the
largest. We define Xgw as the number of bandwidth measurements to be taken before choosing
a bandwidth tune word for the set-on receiver. In the event of long pulse detection, as Xpw

grows, the stability of the bandwidth measurement increases.

5.7 Center Frequency Estimation

After we have calculated our stable bandwidth over the duration of the pulse, what remains
for a full tune word to be output to the set-on receiver is the center frequency.
A desirable property of any set-on receiver/detector pair would be the ability to dechirp an

LFMOP signal and dehop a NOMOP signal. In the case of this algorithm, we implement this
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functionality by updating the center frequency on a 1.28 us basis. Once we have the stable
bandwidth from X gw observations of the bandwidth, we return to the TOA point generated by
the SPRT and apply that stable bandwidth to finding the center frequency every fourth point.
By allowing the center frequency to be updated on a 1.28 us basis, we provide for the ability
to dechirp long-duration LFMOP signals. For short-duration LFMOP, less than the update
rate, the full bandwidth is captured, with no dechirping effect. For dehop capability, no center
frequency update is needed over a NOMOP pulse as the stable bandwidth should cause the
center frequency to remain constant throughout a single pulse. In a pulse train, the separate
detection of each pulse will provide a new center frequency in each case, resulting in dehopped

output.

5.8 Center Frequency Location

In general, there are two methods for placing the center frequency given a stable bandwidth.
One would be to place the center frequency at the highest energy level subband. The second
would be to place the center frequency at the middle of the bandwidth that covers the significant
energy. To clarify, we offer this example, where there are the two options above. In Figure 5.4,
we show a pulse situation with an asymmetric bandwidth, with the two options for center
frequency calculation. Here, we assume the ability to adjust the bandwidth to cover the coherent
energy spectrum. Choosing center frequency and bandwidth #1, as in Figure 5.5, we see that
we introduce noise into the matched bandwidth filtering because of the asymmetric bandwidth.

If we choose center frequency #2, as in Figure 5.6, we realize a true matched bandwidth process
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Figure 5.6 True matched bandwidth for center frequency #2.

by optimally filtering the significant bandwidth. The only error introduced in this method would
be in the case where the true center frequency is placed on the filter transition band edge, which

would result in some attenuation of that center frequency due to nonideal low-pass filtering.

5.9 Center Frequency Calculation

Given the above choices for center frequency, we choose to locate our center frequency at
the middle of the stable bandwidth for optimal matched bandwidth filtering. Once we obtain
the stable bandwidth estimate, we must return to the TOA location K (1) and begin a center
frequency calculation every fourth point. We use a method similar to bandwidth estimation by
first calculating the statistic /. After we generate the periodogram, we would like to maximize
the energy covered by the stable bandwidth. Given the stable bandwidth and the 27 valid

steps of our baseband modulator, we realize some number of allowable center frequencies for
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Figure 5.7 Allowable tuning steps for center frequency

the bandwidth to be contained between the dc and Nyquist frequency. By summing the energy
contained in the periodogram under the stable bandwidth at each step, we simply choose the
center frequency that generates the maximum energy. This results in a center frequency that

optimally covers the most significant energy at each 1.28 us update.

5.10 FPGA Implementation

Using the statistics already derived in either the FSS or SPRT methods provides sim-
ple methods of bandwidth and center frequency estimation. Each method involves very little
computational complexity. The advanced ANOVA techniques would require significantly more
computational complexity, possibly involving a further transformation of the data, and squaring
operations. These methods are unsuitable for implementation in this project at this point; how-
ever, they may be useful in future applications on more advanced FPGAs or in a floating-point

format.
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